Supporting Information for

Boosting Sodium Storage of Fe$_{1-x}$S/MoS$_2$ Composite via Heterointerface Engineering

Song Chen1,2, Shaozhuan Huang2, Junping Hu2, Shuang Fan1,2, Yang Shang2, Mei Er Pam2, Xiaoxia Li2, Ye Wang4, Tingting Xu4, Yumeng Shi1,3, *, Hui Ying Yang2, *

1International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People’s Republic of China

2Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore

3Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People’s Republic of China

4Key Laboratory of Material Physics of Ministry of Education, School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052, People’s Republic of China

*Corresponding authors. E-mail: yanghuiying@sutd.edu.sg (Hui Ying Yang); yumeng_shi@163.com (Yumeng Shi)

Supplementary Figures

![Supplementary Figures]

Fig. S1 a XRD pattern and b SEM image of PB nanocubes. SEM images of c FeCN nanocubes and d FeCN/MoS$_2$ composite
Fig. S2 Survey XPS spectra of the Fe_{1-x}S/MoS$_2$ composite

Fig. S3 a XRD pattern, b, c SEM images, d, e TEM images and f HRTEM image of Fe$_{1-x}$S nanocubes

Fig. S4 Nitrogen adsorption-desorption isotherms of Fe$_{1-x}$S/MoS$_2$ composite/Fe$_{1-x}$S nanocubes
Fig. S5 CV curves of Fe$_{1-x}$S nanocube electrode for the first five cycles

Fig. S6 Galvanostatic charge-discharge profiles of Fe$_{1-x}$S nanocube electrode at 100 mA g$^{-1}$

Fig. S7 Galvanostatic charge-discharge profiles of Fe$_{1-x}$S nanocube electrode at various current densities
Fig. S8 SEM image of Fe$_{1-x}$S/MoS$_2$ composite after cycling

Fig. S9 CV curves of Fe$_{1-x}$S/MoS$_2$ composite at different scan rates

Fig. S10 a CV curves of Fe$_{1-x}$S nanocubes at different scan rates. b Normalized contribution ratio of capacitive capacities at different scan rates
Fig. S11 a In situ EIS spectra evolution of Fe_{1-x}S electrode at different charge/discharge potentials. b First charge/discharge profile of Fe_{1-x}S electrode at 100 mA g^{-1} with labeled points for EIS. c EIS spectra of Fe_{1-x}S electrode after different cycles.

Fig. S12 E vs. t curve for a single GITT during discharge process

Na-ion chemical diffusion coefficient (D_{Na}) is calculated based on the following equation [S1]:

$$D = \frac{4L^2}{\pi \tau} \left(\frac{\Delta E_s}{\Delta E_t} \right)^2$$

where L is Na\(^+\) diffusion length (approximately equal to the electrode thickness for compact electrode), τ is the relaxation time, ΔE_s is the steady state voltage change by the current pulse, ΔE_t is the voltage change during the current pulse after excluding iR drop.
Fig. S13 Contour plots of in situ XRD results and the corresponding selected diffraction patterns of Fe$_{1-x}$S/MoS$_2$ composite electrode during the initial four cycles at 200 mA g$^{-1}$

![Contour plots of in situ XRD results and the corresponding selected diffraction patterns](image)

Fig. S14 The migration path on a Fe$_{1-x}$S surface, and b Fe$_{1-x}$S/MoS$_2$ interface

Supplementary References

https://doi.org/10.1039/C5EE02183A